

Legend

\square City of Wasilla Composite Score Alignment Name
Boundary
Corridor
$13-23$
$24-29$
Northern Corridor
Southern Corridor 1 30-69

Southem Comidors 2 and 3. Southem comidors 2 and 3 are the longest of the routes. In doing so they also tend to have higher numbers of impacts. Both of these routes have overall constraint scores above 5 million. They also impact among the most amounts of wetland (with Southem Coridor 3 affecting the most at 80 acres; more than twice any of the altematives recommended to be camied forward). Because they are the longest they would also likely cost the most. Southem Comidor 2 is particularly impactive where it traversed Cottonwood Creek between Knik Goose Bay Road and Suburban Drive. In this location it has serious impacts to the creek, wetlands, and two major residential subdivisions. Southem Coridor 3, a side from being the longest, adds considerable curvature at is southwestem most point. Such curvature and length does not satisfy the components of the purpose and need seeking to reduce curvature and travel time through the alignment. Because there are shorter altematives, which meet the purpose and need with lowerimpact scores, these altematives were rejected.

City Route E. City route E has one of the highest totals of flawed cells $(20,921)$ to be traversed and also has among the highest impacts to wetlands (58 acres). The eastem segment of this alignment is where most of the impacts occur. This eastem segment will largely be unneeded when the ARRC completes the South Wasilla Track Realignment (curently undergoing conceptual engineering and an environmental assessment). The alignment followed in the SWTR project roughly follows the City's propose Altemative E alignment, but it was shifted to avoid the wetland impacts and a potentially eligible historic site. That project ends at milepost 158.

Computer Generated Routes. While both of the computer generated routes had relatively low constraint scores and compare fairly against the environmental factors, they to do not represent alignments that are acceptable from an engineering perspective. The computer does not generate a lignments with acceptable cuvature, but rather jumps from good cell to good cell in a herky-jerky line. While it was an interesting analytical exercise, it did not generate acceptable alignments.

Alignments to Be Carried Forward
As mentioned earlier, there are two primary comidors to be further pursued, with alignment variations that will require additional engineering and environmental analysis to make a final location decision.

Northem Comidor Routes. Three of the city's proposed routes (A, B, and C) show promise and should be further evaluated as design/engineening variations of a northem comidor route. While not fully within the ARRC identified comidors, these routes have scores and evaluation factor results which make them difficult to eliminate without additional engineering and environmental work. The segments located outside of the identified comidors, however, are where the greatest challenges of these alignments occur. Routes B and C traverse perpendicular to areas of considerable slope that will either require extensive fill (which occurs across identified wetland areas) or long, expensive structures. As a result of this diffic ult terrain, these routes did not score as well as the ARRC identified route (identified as the "northem Comidor Route in Table 15 (City Altemative A is the closest of the city alignments to the one evaluated in Appendix A by the ARRC).

The "Northem Coridor" route has the lowest overall constraint score, the lowest constraint per foot score, and lowest acreage of wetlands affected of any of the northem comidor routes. For these reasons it was chosen as a representative route for conceptual engineering and cost estimating as part of this a ltematives a nalysis (see AppendixA).

The north altemative is approximately 4.59 miles long, involves 4 structures (bridges/grade separated crossings) and will cost approximately $\$ 83,000,000$. It will reduce travel time by 2.9 minutes and reduce the curvature by 78 degrees. See Appendix A formore details about the north altemative.

Southem Coridor Routes. There are two southem comidor routes, which are essentially design variations of each other. Based on the level of information available and the engineering that has occurred, it is not possible to recommend one over the other without additional engineering and environmental work. Because Southem Coridor 1 has the lower constraint score, fewer flawed cells, and a lower constraint/linear foot, and affects fewer residential parcels, it was selected as the representative route for conceptual engineering and cost estimating as part of this altematives a nalysis (see AppendixA).

The south altemative, assuming the South Wasilla Track Realignment is built, is approximately 8.11 miles long, involves 7 structures (bridges/grade separated crossings) and will cost approximately $\$ 129,500,000$. It will reduce travel time by 2.8
minutes and reduce the curvature by 244 degrees. See AppendixA formore details about the north altemative.

Findings and Recommendations

There are a number of findings and recommendations gleaned by the team that can be taken away from this a nalysis.

- There are two reasonable comidors that should be further explored during NEPA and preliminary engineering (1) a northem comidor and (2) a southem coridor. Appendix A contains conceptual engineering drawings of representative alignments within those coridors based on the evaluation measures explored in this document. Alignment altematives would be developed during the next phase of the project.
- A northem comidor that traverses from near MP 158 to 163 that could start either east or west of the City Sewage Treatment Plant. Additional engineering should be performed to finalize the location of the alignment relative to the severe terrain and associated engineering costs of dealing with that terrain.
- The opportunity for a highway bypass to coincide with the northem railroad comidor, would hinge on the ability to construct an interchange in the vicinity of South Hermon and the Parks Highway. Further engineering should be performed to evaluate this interchange. Further disc ussion with ADOT\&PF is required.
- Land development is rapidly closing opportunities to complete the northem comidor. One critical location is the parcel of land south of Lake Lucille Park, but north of the ball fields/ subdivisions. New subdivisions in this last relatively open corridor could close off opportunities for a northem bypass. If too much time passes, southem bypass options may become the only reasonable choice.
- No reasonable comidors for rail bypass on the north side of the Parks Highway were identified. Extensive development, lakes, and roadways block that route.
- Southem coridor routes, while longer, provide greater flexibility for alignment variation to avoid and minimize project related impacts.

	Alignment	$\underset{\text { feet) }}{\text { Length (linear }}$ feet)	Area (acres)	Constraint Score ${ }^{1}$	Constraint Score Breakdown (\# of Cells)	Constraint Score/Linear Foot	Wettand	Number of parcels with a building appraised value over $\$ 100,000$	Number of Residential Parcels	Number of Stream Crossings	Number of Road Crossings ${ }^{2}$	Gravel sub surface (\% of Comidor with > 15\% gravel content)	Substantially within Coridor
	Northem Coridor	26,450	304	2,847,197	Good: 88,198 Acceptable: 33,095 Flawed:12,909	108	31.1	17	30	2	6	48.0\%	Yes
	City Route A	29,274	336	3,298,717		113	35.5	18	27	2	4	50.8\%	Yes
	City Route B	30,224	347	3,372,384	Good:101,565 Acceptable:32,913 Flawed:18,599	112	44.7	9	19	2	5	50.7\%	Yes
	City Route C	28,197	324	3,084,245	$\begin{gathered} \text { Good:97,596 } \\ \text { Acceptable:32,425 } \\ \text { Flawed:12,918 } \\ \hline \end{gathered}$	109	37.4	12	22	2	6	51.6\%	Yes
	Southem Cornidor 1	41,890	481	4,385,461	$\begin{gathered} \text { Good:164,150 } \\ \text { Acceptable:42,733 } \\ \text { Flawed: } 4,508 \\ \hline \end{gathered}$	105	34.7	16	36	3	8	57.9\%	Yes
	City Route D	39,548	454	4,417,796	Good:131,947 Acceptable:55,842 Flawed:11,924	112	34.8	24	44	3	8	47.1\%	Yes
	$\begin{gathered} \text { Shortest MP } \\ 154-163 \end{gathered}$	38,335	440	4,944,729	$\begin{gathered} \text { Good: } 84,522 \\ \text { Acceptable:60,052 } \\ \text { Hlawed: } 49,072 \\ \hline \end{gathered}$	129	39.1	54	68	3	16	41.6\%	No
	$\begin{gathered} \text { Shortest MP } \\ 157-163 \end{gathered}$	29,154	335	3,961,717	$\begin{gathered} \text { Good:60,162 } \\ \text { Acceptable:36,500 } \\ \text { Flawed:51,037 } \end{gathered}$	136	32.7	31	67	2	9	37.5\%	No
	Section Line MP 154-163	42,993	493	5,254,446	$\begin{gathered} \text { Good: } 99,578 \\ \text { Acceptable:87,220 } \\ \text { Flawed:29,781 } \end{gathered}$	122	31.5	59	96	3	14	79.1\%	No
	Section Line MP 158-163	22,742	261	2,883,948	$\begin{gathered} \text { Good:61,101 } \\ \text { Acceptable:22,971 } \\ \text { Hawed:31,116 } \end{gathered}$	231	19.8	41	68	2	10	20.4\%	No
	Southem Cornidor 2	45,146	518	5,000,984	$\begin{gathered} \text { Good:1101,237 } \\ \text { Acceptable:56,614 } \\ \text { Flawed: } 9,830 \\ \hline \end{gathered}$	111	56.8	18	47	4	15	33.1\%	Yes
	Southem Coridor 3	48,846	561	5,433,028	$\begin{gathered} \text { Good:168,352 } \\ \text { Acceptable:64,504 } \\ \text { Flawed: } 13,325 \\ \hline \end{gathered}$	111	80.3	15	39	4	6	35.1\%	Yes
	City Route E	40,777	468	4,607,577	$\begin{gathered} \text { Good:122,:109 } \\ \text { Acceptable:62,642 } \\ \text { Flawed: } 20,921 \\ \hline \end{gathered}$	113	58.0	16	27	3	7	55.3\%	Yes
	Computer Analysis MP 154-163	40,595	466	4,369,127	$\begin{gathered} \text { Good:135,:770 } \\ \text { Aceptable:51,086 } \\ \text { Flawed: } 16,852 \end{gathered}$	108	21.7	43	73	3	17	54.7\%	No
	Computer 158-163	25,473	292	2,748,626	Good: 85,006 Acceptable:25,784 Flawed: 17,542	108	17.2	39	67	2	10	68.1\%	Yes
Key													
Constraints which contribute to rejection		Factors used to identify routes on which to perform conceptual engineering											

人, (a)

- Southem comidor routes (2 and 3) were rejected at this time because of the added length (and therefore greater costs and impacts). If too much time elapses and development continues to sprawl southward from Wasilla, these options may represent the only rema ining opportunity for a bypass without incuming even greater costs and impacts.
- The coridor evaluation and/or representative alignments should be adopted into the Mat-Su Borough and Wasilla LRTPs and Comprehensive Plans. Corridor preservation measures should be implemented to both alert prospective homeowners and to preserve the ability to construct a bypass with undo social environmental impacts a nd right-of-way costs.
- The opportunity for a highway bypass to coincide with the southem railroad comidor, would hinge on the ability to construct an interchange on the Glenn Highway, south of the recently completed Glenn-Parks Interchange. Sufficient separation between the ramps Interchange. Sufficient separation between the ramps will be required and could be challenging and/or affect the southem comidor alignment. Further engineering should be performed to evaluate this interchange. Further discussion with ADOT\&PF is required
- Three of the city's proposed routes (A, B, and C) show promise and should be further evaluated as design/engineering variations of a northem coridor route. While not fully within the ARRC identified comidors, these routes have scores and evaluation factor results which make them difficult to eliminate without additional engineering and environmental work.

References

B\&B Environmental, Inc. October 1992. "C ity of Wa silla Comprehensive Plan." For the Matanuska-Susitna Borough

Bomhoff \& Associates. 1982 "Location Study: New Parks Highway Location Study." Forthe Alaska Department of Transportation \& Public Facilities

CH2M Hill, November 2002. "Parks Highway Comidor
Management Plan: Vision and Scoping Document." For the Ala ska Department of Transportation and Public Facilities. Available at <
http://projects.ch2m.com/ParksHwyCMP/draft visionstmnt/Par ks_Highway_comidor_Mgt_Plan_Vision_Statement_a nd_Scopin g_Document.pdf>May 2004.

Hattenburg, Scott. 2001. "Wasilla Alaska Railroad Relocation Reconnaissance Study." For the City of Wasilla.

HDR Alaska. April 2004. "Commuter Rail Station Ana lysis." For the Alaska Railroad
U.S. Federal Register. November 13, 1986 Part II. Rules and Regulations, Vol. 51, No. 219. U.S. Department of Defense.
Corps of Engineers, Department of the Army. 33 C FR Parts 320-
330, Regulatory Programs of the Cops of Engineers; Final Rule.

Appendix A
Conceptual Cost Estimates and
Alignments

Wasilla Realignment Alternative Analysis

Conceptual cost estimate: single track on double embankment

[^0]| Wasilla Realignment Alternative Analysis Conceptual Level Cost Estimate The cost is for single track on a double track | embankment | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | South Alternative | | | | | orth Alternative | | | | |
| | Alt S2 Railroad | Alt S2 Wasilla Creek | $\begin{gathered} \text { Alt S2 } \\ \text { Cottonwood } \\ \text { Creek } \end{gathered}$ | $\begin{gathered} \text { Alt S2 } \\ \text { Lake Lucille } \\ \text { Cruek } \end{gathered}$ | $\begin{gathered} \text { Alt S2 } \\ \text { Faiview Loop } \\ \text { Overpass } \end{gathered}$ | $\underset{\substack{\text { Knik-Goose Say } \\ \text { Overpass }}}{\text { Alt }}$ | $\begin{gathered} \text { Alt S2 } \\ \text { Church Road } \\ \text { Overpass } \end{gathered}$ | $\begin{aligned} & \text { Alt S2 } \\ & \text { South Davis } \\ & \text { Frontage } \end{aligned}$ | Alt N1 Railroad | $\begin{gathered} \text { Alt N1 } \\ \text { Cottonwood } \\ \text { Creek } \end{gathered}$ | $\begin{aligned} & \text { Alt N1 } \\ & \text { Lake Lucille } \\ & \text { Creek } \end{aligned}$ | $\begin{gathered} \text { Alt N1 } \\ \text { Knik-Goose Bay } \\ \text { Overpass } \end{gathered}$ | $\begin{aligned} & \text { Alt N1 } \\ & \text { Church Road } \\ & \text { Overpass } \end{aligned}$ | |
| Length (mile) | 8.109 | \cdots | -- | -- | ${ }^{0.294}$ | 0.294 | 0.294 | 0.294 | 4.594 | -- | -- | 0.294 | 0.294 | |
| Length (feet) | 42,816 | -- | -- | -- | 1,550 | 1,550 | 1,550 | 1,550 | 24,254 | -- | -- | 1,550 | 1,550 | |
| Track | | - | - | - | - | - | - | - | | - | \cdots | - | - | |
| Track Cost $=$ | \$10,704,045 | - | - | - | -- | -- | - | -- | \$6,063,500 | - | - | -- | -- | |
| Ballast | 71,975 | - | - | - | - | - | - | - | 40,773 | - | - | - | -- | yd^{3} |
| Sub-ballast | ${ }^{64,224}$ | - | - | - | - | - | - | - | ${ }^{36,382}$ | | - | - | - | yd ${ }^{3}$ |
| Ballast total Ballast Cost $=$ | $\begin{gathered} 136,199 \\ \$ 5,856,557 \end{gathered}$ | -- | -- | -- | -- | .- | -- | -- | $\begin{gathered} 77,1,15 \\ \$ 3,317,665 \end{gathered}$ | - | -- | -- | -- | yd ${ }^{3}$ |
| Removal of existing track Length | 48,315 | | | | | | | | 25,543 | | | | | ${ }^{\text {t }}$ |
| Powered switch | 2 | | | | | | | | , | | | | | |
| Powered switch cost = | \$1,850,000 | | | | | | | | \$1,850,000 | | | | | |
| non-electric switctich cost $\begin{aligned} & \text { not } \\ & \text { net }\end{aligned}$ | $\stackrel{2}{\text { 230,000 }}$ | | | | | | | | | | | | | |
| Excavation | 706,911 | - | - | - | - | - | - | - | 165,897 | - | - | - | - | yd ${ }^{3}$ |
| 75\% usable | 530,183 | - | - | - | - | - | - | - | 124,423 | \cdots | \cdots | \cdots | \cdots | yd ${ }^{3}$ |
| Excavation Cost = | \$3,54,555 | - | -- | - | - | - | - | - | \$829,485 | - | - | - | - | |
| Embankment total | 453,426 | - | - | - | - | - | - | - | 191,901 | - | - | - | - | yd^{3} |
| From project | 530,183 | - | - | - | - | - | - | - | 124,423 | - | \cdots | - | - | ya^{3} |
| From other sources Borrow Cost | 76,757 $\$ 690,815$ | \cdots | 67,478 $\$ 607304$ | \cdots | \cdots | - | \cdots | yd ${ }^{3}$ |
| Borrow Cost $=$ Clearing \& grubbing area | \$690,815 | -- | \cdots | - | \cdots | - | \cdots | - | $\$ 67,304$ 111 | - | - | - | - | |
| Clearing \& grubbing cost $=$ | \$825,656 | -. | \cdots | -. | \cdots | -. | -. | \cdots | ${ }_{\$ 467,708}$ | \cdots | \cdots | \cdots | -. | acre |
| Wetland mitigation acres of impact | | | | | | | | | 31.1 | | | | | |
| Mitigation cost $=$ | \$1,908,500 | | | | | | | | \$1,710,500 | | | | | |
| Fiberstar relocation
 Relocation Cost = | \$3,173,912 | .- | .- | -- | -- | -- | -- | -- | \$1,797,920 | -- | -- | -- | -- | |
| Noise \& Vibration mitigation cost = | \$2,500,000 | | | | | | | | \$1,87,000 | | | | | |
| Bridges | | | | | | | | | | | | | | |
| Bridge length | - | 165 | 65 | 45 | 85 | 85 | 90 | 85 | - | 170 | 70 | 105 | 90 | t |
| Bridge width | - | | | | | | | | - | | | | | ${ }^{\text {H }}$ |
| Bridge cost = | \cdots | $\begin{gathered} \$ 2,475,000 \\ 7,200 \end{gathered}$ | $\$ 975,000$ 7,200 | \$675,000
 7,200 | $\underset{\substack{\$ 841,500 \\ 6,076}}{ }$ | ${ }_{\text {¢ }}^{\text {\$841,500 }}$ | ${ }_{\text {\$891,000 }}$ | \$841,500 6,076 | \cdots | $\underset{\substack{\text { \$2,550,000 } \\ 7,200}}{ }$ | $\$ 1,050,000$ 7,200 | ${ }_{\substack{\$ 1,039,500 \\ 6,076}}$ | $\underset{\text { \$891,000 }}{6,076}$ | |
| Abutment area retaining wall area Retaining wall cost | \cdots | $\begin{aligned} & 7,200 \\ & \$ 4488,000 \end{aligned}$ | 7,200 $\$ 468,000$ | 7,200 $\$ 468,000$ | ¢,076 $\$ 394940$ | ${ }_{\substack{\text { 6,076 } \\ \$ 394940}}$ | ${ }_{\text {¢ }}^{\$ 3944940}$ | 6,076 $\$ 394940$ | \cdots | 7,200 $\$ 468,000$ | 7,200 $\$ 468,000$ | | $\begin{gathered} 6,076 \\ \$ 394,940 \end{gathered}$ | sf |
| Road | | | | | | | | | | | | | | |
| Asphalt | - | | - | - | - | - | - | - | - | - | - | - | - | yd ${ }^{3}$ |
| Asphalt cost = | -- | | -- | -- | - | -- | -- | -- | | | | -- | -- | |
| PG 58-28 | - | | -- | - | - | - | - | -- | | - | - | -- | -- | yd ${ }^{3}$ |
| PG 58-28 Cost = | - | | - | - | - | -- | -- | - | | | - | - | - | |
| Structura section | \cdots | | - | - | -- | - | - | - | - | - | - | -- | - | yd ${ }^{3}$ |
| Structural section Cost = | -- | | -- | - | -- | -- | -- | -- | | -- | -- | -- | -- | |
| Overpass ramps | | | | | | | | | | | | | | |
| Embankment total Embankment cost = | \cdots | | \cdots | \cdots | 87,202 $\$ 784,818$ | 87,202 $\$ 784,818$ | 87,202 $\$ 784,818$ | 8784,818 | \cdots | \cdots | \cdots | 87,202 \$784,818 | 87,202 $\$ 784,818$ | yd ${ }^{3}$ |
| Asphalt | - | | -- | -- | 344 | 344 | 344 | 344 | - | - | - | 344 | 344 | $y d^{3}$ |
| Asphatt cost $=$ | - | | - | - | \$33,067 | \$33,067 | \$33,067 | \$33,067 | - | - | - | \$33,067 | \$33,067 | |
| PG 58-28 | - | | -- | - | 19 | 19 | 19 | 19 | - | - | - | 19 | 19 | yd ${ }^{3}$ |
| PG 58-28 Cost $=$ | -- | | - | - | \$4,679 | \$4,679 | \$4,679 | \$4,679 | - | - | -- | \$4,679 | \$4,679 | |
| Structural section | - | | -- | - | 1,033 | 1.033 | 1,033 | 1,033 | -- | - | - | 1,033 | 1,033 | yd ${ }^{3}$ |
| Structural section Cost Guadrail $=$ | - | | -- | -- | \$23,767 | \$23,767 | \$23,767 | \$23,767 | \cdots | - | - | \$23,767 | \$23,767 | |
| Guardrail
 Detour road cost | -. | | -- | \cdots | (155,000 | \$155,000 | (155,000 | $\begin{gathered} 3100 \\ \$ 155,000 \end{gathered}$ | -- | \cdots | \cdots | \$155,000 | $\begin{aligned} & 31500 \\ & \$ 155,000 \end{aligned}$ | |
| Construction subtotal | \$23,959,884 | \$2,943,000 | \$1,443,000 | \$1,143,000 | \$2,237,771 | \$2,237,771 | \$2,287,271 | \$2,237,771 | \$12,615,874 | \$3,018,000 | \$1,518,000 | \$2,435,771 | \$2,287, 271 | |
| | | | | | Each underpass | amp is 775^{\prime} long, 4 | grade, 31' high. | crosssection | | | | | | |
| Track Cost $=$ | \$250 | rail, ties (\$/ft) | | | 160^{\prime} wide at the | bottom and 36' acros | the top. Total v | of two ramps | | | | | | |
| Ballast Cost $=$ | ${ }_{\$ 5} 43$ | | | | | $31 \times 98 \times 775$ | 2,354,450cf | | | | | | | |
| Excavation Cost = Borrow Cost = | $\$ 5$ $\$ 9$ | yd ${ }^{\text {y }}$ | Unit prices from A | OT 1998-2002 | tabulation summ | | | | | | | | | |
| Sheet pile Cost = | \$26 | tr^{2} | Costs increased | per year to 200 | | | | | | | | | | |
| Fiberstar relocation Cost = | \$391,400 | \$/mile | Embankment, bal | st, structural seca | on based on 1.9 to | ns per cubic yard | | | | | | | | |
| Asphalt Cost = | ${ }_{\$ 96}$ | yd ${ }^{3}$ | Asphalt based on | 025 tons per cui | c yard | | | | | | | | | |
| pg 58-28 | \$247 | yd ${ }^{3}$ | | | | | | | | | | | | |
| Structural section Cost Guardrail Cost $=$ | $\$ 23$
 $\$ 50$
 505 | $\mathrm{yda}^{\text {a }}$ | | | | | | | | | | | | |
| | ${ }_{\text {\$275 }}$ | psf | | | | | | | | | | | | |
| Rail bridge cost $=$ Powered swith cost | $\$ 15,000$ $\$ 925.000$ | ft | | | | | | | | | | | | |
| Powered switch cost $=$ non-electric switch cost = | \$925,000 | each
 each | | | | | | | | | | | | |
| Retaining wall cost $=$ | \$65 | st | | | | | | | | | | | | |
| Clearing \& grubbing cost Wetland mitigation | \$4,200 $\$ 55,000$ | acre | | | | | | | | | | | | |

Wasilla Alternative Analysis
Conceptual Level Cost Estimate
Land acquisition cost
The grand total cost assumes the purchase of the entire lot for each lot impacted by the right-of-way requirer The ROW cost assumes that fractions of lots are purchased, only that land required for the right-of-way.

Multiply appraised value by a land acquisition cost factor to estimate true cost of land acquisition. land acquisition cost factor 3.5 see note below

South Alternative		
Number of Properties impacted	91	
Total acreage of those properties	4,455	Adjusted
total land appraised value	$\$ 5,904,700$	Grand total
total building appraised value	$\$ 3,434,600$	$\$ 32,687,550$
Grand Total	$\$ 9,339,300$	
Cost per acre	$\$ 2,096$	481
Acreage we need	48	
ROW cost	$\$ 1,008,272$	

North Alternative		
Number of Properties impacted	73	
Total acreage of those properties	3,161	Adjusted
total land appraised value	$\$ 3,103,400$	Grand total
total building appraised value	$\$ 3,702,300$	$\$ 23,819,950$
Grand Total	$\$ 6,805,700$	
Cost per acre	$\$ 2,153$	
Acreage we need	304	$\$ 654,421$

The two alternatives do not pass through a commercial district or through urban areas.
Land acquisition cost factor derived from ADOT real estate estimating method. The factor includes multiplying the assessed value by 1.25 to determine market value, then adding appraisal costs, acquisition costs, possible relocation costs, administration costs (20\%) and contingency costs (20\%). At the present time the actual cost to acquire property is approximately 3.2 times the assessed value. The 3.2 was rounded up to 3.5 for this estimate. The factor of 3.5 is based on an urban commercial district where the cost of relocation is higher. Thus the 3.5 will over estimate the land costs somewhat for less developed rural area the corridor passes through..

Wasilla Realignment Alternative Analysis
Transit Times

Track lengths	feet	mile	
Existing track length 154-163	48,316	9.151	
Existing track length 158-163	25,544	4.838	
South Wasilla Track Realignment (SWTR)	18,007	3.410	Project from 154 to 158
North alternative	24,255	4.594	
South alternative	42,817	8.109	
For the North Alternative			
Existing 158-163	7,364	existing	mph segment between 158-163
Existing 158-163	18,181	existing	mph segment between 158-163
For the South Alternative			
Existing 154-163	30,135	existing	mph segment between 154-163
Existing 154-163	18,181	existing	mph segment between 154-163

$$
\text { Existing 154-163 } \quad 18,181 \text { existing } 49 \mathrm{mph} \text { segment between 154-163 }
$$

For the South Alternative

Existing 158-163 7,364 existing 25 mph segment between 158-163 Existing 158-163 18,181 existing 49 mph segment between 158-163 SWTR 154-158 18,077 proposed 59 mph segment between 154-158
*This assumes that the South Wasilla Track Realignment is approved and built

Train travel speeds mile/hour	
feet/sec	
25	36.667
49	71.867
59	86.533

The transit times assume instantaneous acceleration or deceleration between the different speed zones. The intent is to show relative transit times between the alternatives and not actua travel time. The use of instantaneous acceleration understates the transit time of the project, perhaps significantly. A computer model might be used in the later phases of the project to accurately estimate travel times.

Wasilla Realignment Alternative Analysis

Curvature

North alternative curvature

Existing track 158-163 = 247
North alternative $=169$
REDUCTION = 78
South alternative curvature
Existing curvature 154-163 = 730
South alternative $=283$
REDUCTION = 447

South alternative*

Existing track + SWTR $=527$
South alternative $=283$
REDUCTION = 244
*This assumes that the South Wasilla Track Realignment is approved and built

Existing curvature 154-163	730	degrees	Along year 2004 existing track
Existing track 158-163	247	degrees	
Proposed South Wasilla	280	degrees	Proposed project from 154 to 158
Track Realignment (SWTR)	527	degrees	Existing track 158 to 163 + SWTR
Existing track + SWTR	169	degrees	$158-163$
North alternative	283	degrees	$154-163$

Design Criteria for ARRC Wasilla Realignment Alternatives Analysis Stud)

	Rail	Rail	Highway	Frontage Road	Unit	Source
Functional Classification	Commuter	Freight	Freeway	Local Road		
Level-of-Service	--	--	B	D		H: GB p512; L: GB Exh 2-32
Terrain	--	--	Rolling	Rolling		
Design Life	25	25	25	20	yrs	H: SB 226*; L: GB p65, 384
Design Speed	79	60	70	40	mph	H: GB p512; L: GB Exh 5-1
Design Vehicle Geometric	E-80	E-80	WB-120	WB-67		H \& L: E-mail 6-1-2000
Design Vehicle Structural	E-80	E-80	HS-25	HS-25		H \& L: PCM Sec 1120.3.2
Typical Section						
Lane Width	--	--	12	12	ft	H: GB p508
Shoulder Width	--	--	4 or 10	6	ft	H: GB p509; L: GB Exh 5-5
Horizontal Alignment						
Maximum Grade	1.3	1.3	4	10	\%	H: GB Exh 8-1; L: PCM Fig 1120-1
Minimum Curve Radius	5,730	2,865	2,050	510	ft	H \& L: GBExh 3-22
Maximum Superelevation	$3{ }^{\prime \prime}$	3'	6	6	\%	H \& L: PCM Fig 1120-1
Spiral Length	260	210	--	--	ft	
Sight Distance						
Passing Sight Distance	--	--	2480	1470	ft	H: GB Exh 7-1; L: GB Exh 5-3
Stopping Sight Distance	--	--	730	305	ft	H: GB Exh 7-1; L: GB Exh 5-2
Vertical Alignment						
Crest K Value	231	131	247	44		H: GB p278, Exh 3-78; L: GB p274, Exh 3-76
Crest curve length	600	340	1,980	880	ft	
Sag K Value	231	131	181	44		H: GB p278, Exh 3-78; L: GB p274, Exh 3-76
Sag curve length	600	340	1,450	880	ft	
Vertical curve lengths based on maximum grades						
Embankment \& Excavation Slopes			Fore/Back	Fore/Back		
Embankment	1V:2H	1V:2H	1V:6H/1V:3H	$1 \mathrm{~V}: 4 \mathrm{H} / 1 \mathrm{~V}: 3 \mathrm{H}$		H: GB p516; L: PCM Table 1130-8
Excavation	1V:2H	1V:2H	$1 \mathrm{~V}: 2 \mathrm{H}$	$1 \mathrm{~V}: 2 \mathrm{H}$		
Vertical Clearance						
Rail under highway and local road	--	--	23.5	23.5	ft	
Highway under rail and local roads	18.5	18.5	--	18.5	ft	PCM Table 1130-1
Local road under rail and highway	16.5	16.5	16.5	--	ft	PCM Table 1130-1
Right-Of-Way Width	200	200	~250**	~ 50	ft	
Combined Rail and Highway Corridor	500	500	500	--	ft	
* Assumes the MatSu Borough will become an MPO ** Add 200-feet at each interchange, minimum						
Other Comments						H = Highway
Rail						$\mathrm{L}=$ Local $/$ Frontage road
Embankment \& Ballast section for double track						
Later studies will likely have a higher design speed, probably 79 mph , with attendant increases in superelevation to $5^{\prime \prime}$, curve radius and spiral length.						
Highway						
Highway section 4 lane divided highway, with provisions for adding 2 more lanes, and full control of access						
Rail design criteria suitable for highway design speed of 75 mph with 6% maximum superelevation						
For grade determination terrain in project area is rolling						
One hundred foot separation between track centerline and nearest highway appurtenance assumes limited access highway and separated grade crossings for all cross streets						
Local / Frontage Road						
Rural frontage roads should use the "Local Roads" standards (GB p516)						
Road section width 36 ' ; two 12' lanes, two 6' shoulders						
Road section should also include pathway facilities (10-foot paved)						
While the maximum grade for local roads is 10%, it is assumed that the roads will be designed to a 4-6\% grade						
The HS-25 truck is a tractor with a semi-trailer						
K value is a measure of curvature and is the distance needed for a 1% change in grade. The greater the K value the flatter the curve.						
Criteria Sources						
PCM = Alaska PreConstruction Manual						
GB $=$ AASHTO Geometric Design of Highway and Streets						
Rail criteria from AREMA Manual for Railway Engineering arid ARRC Standard Drawings						

THESE DRAWNGS DEPICT POSSIBLE NORTH AND SOUTH
THE TRACK CENTERLINE IS SHOWN ALONG WTH A 500-FOOT WDEERRIGHE-OF-WHOY CORNDOR WTH A
CORRIOOR IS WIE ENOUGH FOR BOTH RALLROAD AND

THE DRAWINGS ARE BASED ON THE 1986 TOPOGRAPHIC

DEVELOPMENT SINCE 1986 MAY NOT be SHown on

alganment length

track curvature

	ALTERNATIVES	
	NORTH	SOUTH*
ExISTING CURVATURE	247°	527°
PROPOSED CURVATURE	${ }^{169}$	283°
CURVATURE REDUCTION	78°	244°

MAXIMUM $\begin{aligned} & \text { DEGREE OF CURVE } \\ & \text { MAXIMUM } \\ & \text { GRADE }\end{aligned}=1 \%$
SOUTH ALTERNATVES COMPARISON
ASSUMES THAT THE SOUTH WASILLA
TRAKK REALIGNMENT IS APRROVED

 IRF
OF DTTERN
AREA
THE LONG RANGE TRANSPORTATION PLAN MAY
RECOMMEND ADOITONAL CROSSINGS OF THE PROPOSED RECOMMEND ADDITIONAL

[^0]: The cost is for single track on a double track embankment
 Assumed that 75\% of excavation will be used for embankment construction
 Soft soils work includes excavation of poor soil, extra borrow \& geogrid or geotextile
 Utilities include overhead lines and natural gas line relocations
 Highway co-location costs not included in this estimate

