

Document Number: 1183A008

Project: Whittier Barge Slip #2 Project #: 08-1183

Contract/Client: PND

Design Topic: Hydraulic reservoir capacity calculation

Author: LWM Date: 12/21/2009 Check By: Date:

Given: Whittier Barge Slip #2 Modification. This option utilizes 2(ea) 15" bore x 209" stroke hydraulic

lifting cylinders with 12" OD, 8" ID rods. Each cylinder is supplied by its own reservoir.

Find: Calculate the minimum Hydraulic Reservoir capacity required to support each system. Calculate

Horsepower necessary to extend cylinder.

Solution:

Calculation variables

Lift Cylinder Bore (d_{cyl}): $d_{cyl} := 15in$

Lift Cylinder Rod Diameter (od_{rod}): $od_{rod} := 12in$

Lift Cylinder Rod Inside Diameter (id_{rod}): $id_{rod} := 8in$

Lift Cylinder Stroke (I_{cyl}): $I_{cyl} := 209in$

Working Pressure of system (P_w): $P_w := 1500 psi$

Length of supply lines (I_{pipe}): $l_{pipe} = 600 ft$

Pump Flow (Q_n): $Q_p := 92.8 \frac{gal}{min}$ Note: Bucher QX82-200 pump

Pump efficiency (η) : $\eta := 95\%$

Calculate minimum supply line diameter (d_{pipe}):

 $d_{pipe} := \sqrt{\frac{4}{\pi} \cdot \frac{Q_p}{V_{fluid}}}$ $d_{pipe} = 1.539 \text{ in}$

Note: use $d_{pipe} := 1.625 in$

Calculate total volume of oil in each system when retracted (V_{ret}):

$$V_{\text{ret}} := \frac{\pi}{4} \cdot \left[\left(d_{\text{cyl}}^2 - od_{\text{rod}}^2 + id_{\text{rod}}^2 \right) \cdot l_{\text{cyl}} + d_{\text{pipe}}^2 \cdot l_{\text{pipe}} \right]$$

$$V_{\text{ret}} = 168 \text{ gal}$$

Calculate total volume of oil in each system when extended (V ext)

$$V_{\text{ext}} := \frac{\pi}{4} \cdot \left[\left(d_{\text{cyl}}^2 + i d_{\text{rod}}^2 \right) \cdot l_{\text{cyl}} + d_{\text{pipe}}^2 \cdot l_{\text{pipe}} \right]$$

$$V_{\text{ext}} = 270 \text{ gal}$$

Calculate reservoir capacity needed to supply each cylinder (V res):

$$V_{res} := \max \left[\left(V_{ext} - V_{ret} \right) \cdot 1.5, 2 \min \cdot Q_{p} \right]$$

$$V_{res} = 186 \text{ gal}$$

Initial system fill requirement (Vi_{nit}):

$$V_{init} := V_{ret} + V_{res}$$
 $V_{init} = 353 \text{ gal}$

Conclusion: Use 250 gallon reservoirs and supply with 375 gallons of fluid ea.

Calculate Power needed to extend cylinder (HP_{req}):

$$HP_{req} := \frac{Q_p \cdot P_w}{\eta}$$

$$HP_{req} = 85 \text{ hp}$$